

WWW.RIDGELANDMS.ORG

PWSID 450013 DATE 2019

CITY OF RIDGELAND PWSID 450013 – Date 2019

Ridgeland's Public Works Department is pleased to present to you the 2019 Annual Water Quality Report to inform you about the quality of water and services we deliver to you every day. Our constant goal is to provide a safe and dependable supply of drinking water, and we work consistently to improve the water treatment process and protect our water resources. Ridgeland's water source is three deep-water supply wells in the Cockfield Aquifer and four deep-water supply wells in the Sparta Aquifer.

To comply with the "Regulation Governing Fluoridation of Community Water Supplies," MS0450013 is required to report certain results pertaining to fluoridation of our water system. The number of months in the previous calendar year in which average fluoride sample results were within the optimal range of 0.6-1.2 ppm was 11. The percentage of fluoride samples collected in the previous calendar year that was within the optimal range of 0.6-1.2 ppm was 88%.

The City of Ridgeland routinely tests for contaminants in your drinking water, according to Federal and State laws. The following table shows the results of our monitoring for the period of January 1 to December 31, 2019. As water travels over the land or underground, it can pick up substances or contaminants such as microbes, inorganic and organic chemicals, and radioactive substances. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some contaminants. It is important to recognize that the presence of these elements does not necessarily pose a health risk.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. City of Ridgeland is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or manmade. Remember that the presence of contaminants in small amounts does not necessarily indicate a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer under-going chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate ways to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

The City of Ridgeland asks all our customers to help us protect our water sources, which are the heart of our community, our way of life and our children's future. Citizens can report water leaks and contamination of the system by contacting the Public Works Department at 601-853-2027.

If you would like additional information about your drinking water, you may contact our certified waterworks operator or you may prefer to log on to the internet and obtain specific information about your system and its compliance history at the following address:

www.msdh.state.us/watersupply/index.htm.

Information including current and past boil water notices, compliance and reporting violations, and other information pertaining to your water supply including "Why, When, and How to Boil Your Drinking Water" and "Flooding and Safe Drinking Water" may be obtained.

If you have any questions about this report or concerning your water supply utility, please contact Mark McManus - Water/Sewer System Superintendent at 601-853-2027. We want our customers to be informed about their water supply utility.

Source water assessment and its availability - The Mississippi Source Water Assessment Program is a result of the Federal Safe Drinking Water Act 1996 which mandated all states to identify public water systems that may be susceptible to contamination and adopt appropriate management measures that will enhance their protection. More information is available at www.deq.state.ms.us

DEFINITIONS:

Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA and the Mississippi State Department of Health requires the City to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, may be more than one year old. In the following table you will find several terms and abbreviations with which you may not be familiar. To help you better understand these terms, we've provided the following definitions:

NON-DETECTS (ND) - laboratory analysis indicates that the constituent is not present.

PARTS PER MILLION (ppm) OR MILLIGRAMS PER LITER (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

PARTS PER BILLION (ppb) OR MICROGRAMS PER LITER - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

ACTION LEVEL - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

TREATMENT TECHNIQUE (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water. **MAXIMUM CONTAMINANT LEVEL** - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MAXIMUM CONTAMINANT LEVEL GOAL - The "Goal" (MCLG) is the level of a contaminant in no known or expected risk to health. MCLGs allow for a margin of safety.

PICO CURIES PER LITER (PCI/L) - A Pico Curie is a trillionth of one gram of radium.

TEST RESULTS

DISINFECTANTS & DISINFECTION BYPRODUCTS:									
Contaminant	Violation	Sample Year	Unit of Measure	Your Water	Range	MCL	MCLG or MRDLG	Typical Source	
Chlorine	NO	2019	mg/L	1.3	.30 - 2.19	4	4	Water additive used to control microbes	
Haloacetic Acids (HAA5)	NO	2019	ppb	54	7-63	60	N/A	By product of drinking water disinfection	
Total Trihalomethanes	NO	2010	30001	60	10.8-		N/A	Byproduct of drinking water disinfection	
(TTHMs)	NO	2019	ppb	69	72.4	80	N/A		

INORGANIC CONTAMINANTS:

							# Samples	
	Exceeds	Sample	Unit of	Your			Exceeding	
Contaminant	AL	Year	Measure	Water	AL	MCLG	AL	Typical Source
Lead at consumer taps	NO	2014 - 2016	ppb	1.0	15	0	0	Corrosion of household plumbing systems; erosion of natural deposits
Copper at consumer taps	NO	2014 - 2016	ppb	0.30	1.3	1.3	0	Corrosion of household plumbing systems; erosion of natural deposits
Barium	NO	2019	ppm	0.026	2	2	0	Discharge from drilling wastes; discharge from metal refineries; erosion of natural deposits
Fluoride	NO	2019	ppm	0.713	4	4	0	water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories
Nitrate	, NO	2019	ppm	0.180	10	10	0	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrate-Nitrite	NO	2019	ppm	0.180	10	10	Ō	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

VOLATILE ORGA	NIC CHEMI	CALS (VO	Cs):					
Contaminant	Exceeds AL	Sample Year	Unit of Measure	Your Water	AL	MCLG	# Samples Exceeding AL	Typical Source
Xylenes, Total	NO	2019	ppb	0.881	10,000	10,000	0	Discharges from petroleum factories and chemical factories
Carbon Tetra-Chloride	NO	2019	ppb	0.510	5	0	0	Discharge from chemical plants and other industrial activities
RADIOLOGICAL:								
Contaminant	Exceeds AL	Sample Year	Unit of Measure	Your Water	AL	MCLG	# Samples Exceeding AL	Typical Source
Gross Alpha Particle Activity (excluding Radon and Uranium)	NO	2019	pCi / L	2.1	15	0	0	Erosion of natural deposits
Radium 226	NO	2019	pCi / L	0.42 - 0.47	none	0	0	Erosion of natural deposits
Combined Radium (226 and 228) UNREGULATED (NO CONTAMIN	2019 IANTS, UC	pCi / L	0.37 - 0.45	5	0	0	Erosion of natural deposits
Contaminant	Exceeds AL	Sample Year	Unit of Measure	Your Water	AL	MCLG	# Samples Exceeding AL	Typical Source
Sodium	NO	2019	ppb	82,000 - 150,000	none	none	0	Road Salt, Water treatment Chemicals, Water Softeners and Sewage Effluents